YOLOX-Ray: An Efficient Attention-Based Single-Staged Object Detector Tailored for Industrial Inspections

António Raimundo, João Pedro Pavia, Pedro Sebastião, Octavian Postolache

Resultado de pesquisarevisão de pares

9 Citações (Scopus)

Resumo

Industrial inspection is crucial for maintaining quality and safety in industrial processes. Deep learning models have recently demonstrated promising results in such tasks. This paper proposes YOLOX-Ray, an efficient new deep learning architecture tailored for industrial inspection. YOLOX-Ray is based on the You Only Look Once (YOLO) object detection algorithms and integrates the SimAM attention mechanism for improved feature extraction in the Feature Pyramid Network (FPN) and Path Aggregation Network (PAN). Moreover, it also employs the Alpha-IoU cost function for enhanced small-scale object detection. YOLOX-Ray’s performance was assessed in three case studies: hotspot detection, infrastructure crack detection and corrosion detection. The architecture outperforms all other configurations, achieving (Formula presented.) values of 89%, 99.6% and 87.7%, respectively. For the most challenging metric, (Formula presented.), the achieved values were 44.7%, 66.1% and 51.8%, respectively. A comparative analysis demonstrated the importance of combining the SimAM attention mechanism with Alpha-IoU loss function for optimal performance. In conclusion, YOLOX-Ray’s ability to detect and to locate multi-scale objects in industrial environments presents new opportunities for effective, efficient and sustainable inspection processes across various industries, revolutionizing the field of industrial inspections.

Idioma originalInglês
Número do artigo4681
RevistaSensors (Basel, Switzerland)
Volume23
Número de emissão10
DOIs
Estado da publicaçãoPublicadas - mai. 2023

Nota bibliográfica

Publisher Copyright:
© 2023 by the authors.

Financiamento

Financiadoras/-esNúmero do financiador
ISCTE – Instituto Universitário de LisboaISTA-BM-PDCTI-2017
Fundação para a Ciência e a Tecnologia
Ministério da Ciência, Tecnologia e Ensino SuperiorUIDB/50008/2020
Instituto de Telecomunicações

    Impressão digital

    Mergulhe nos tópicos de investigação de “YOLOX-Ray: An Efficient Attention-Based Single-Staged Object Detector Tailored for Industrial Inspections“. Em conjunto formam uma impressão digital única.

    Citar isto