Reconstruction of signals with sparse representation in optimally dilated Hermite basis

Miloš Brajović, Irena Orović, Marko Beko, Srdjan Stanković

Resultado de pesquisarevisão de pares

4 Citações (Scopus)

Resumo

Compressive sensing (CS) provides a set of powerful techniques for the reconstruction of signals with a sparse representation in some particular domain, based on a reduced number of available samples (measurements). The CS application on real-life signals is directly affected by the existence of a basis or a dictionary in which the signal is sparse or highly concentrated (approximately sparse). Motivated by the fact that the time-axis scaling (dilation) factor of Hermite functions (HF) considerably affects the signal sparsity and concentration, in this paper, we propose a CS framework for the signal reconstruction based on a matching pursuit approach using an optimal dilation factor.

Idioma originalInglês
Páginas (de-até)2789-2797
Número de páginas9
RevistaSignal, Image and Video Processing
Volume17
Número de emissão6
DOIs
Estado da publicaçãoPublicadas - set. 2023

Nota bibliográfica

Publisher Copyright:
© 2023, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.

Impressão digital

Mergulhe nos tópicos de investigação de “Reconstruction of signals with sparse representation in optimally dilated Hermite basis“. Em conjunto formam uma impressão digital única.

Citar isto