Resumo

Recent developments in online communication and their usage in everyday life have caused an explosion in the amount of a new genre of text data, short text. Thus, the need to classify this type of text based on its content has a significant implication in many areas. Online debates are no exception, once these provide access to information about opinions, positions and preferences of its users. This paper aims to use data obtained from online social conversations in Portuguese schools (short text) to observe behavioural trends and to see if students remain engaged in the discussion when stimulated. This project used the state of the art (SoA) Machine Learning (ML) algorithms and methods, through BERT based models to classify if utterances are in or out of the debate subject. Using SBERT embeddings as a feature, with supervised learning, the proposed model achieved results above 0.95 average accuracy for classifying online messages. Such improvements can help social scientists better understand human communication, behaviour, discussion and persuasion.

Idioma originalInglês
Título da publicação do anfitriãoTechnological Innovation for Connected Cyber Physical Spaces - 14th IFIP WG 5.5/SOCOLNET Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2023, Proceedings
EditoresLuis M. Camarinha-Matos, Filipa Ferrada
EditoraSpringer Science and Business Media Deutschland GmbH
Páginas216-229
Número de páginas14
ISBN (impresso)9783031360060
DOIs
Estado da publicaçãoPublicadas - 2023
Evento14th IFIP WG 5.5/SOCOLNET Advanced Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2023 - Caparica
Duração: 5 jul. 20237 jul. 2023

Série de publicação

NomeIFIP Advances in Information and Communication Technology
Volume678
ISSN (impresso)1868-4238
ISSN (eletrónico)1868-422X

Conferência

Conferência14th IFIP WG 5.5/SOCOLNET Advanced Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2023
País/TerritórioPortugal
CidadeCaparica
Período5/07/237/07/23

Nota bibliográfica

Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Financiamento

Financiadoras/-esNúmero do financiador
Fundação para a Ciência e Tecnologia
ILIND - Instituto Lusófono de Investigação e DesenvolvimentoCOFAC/ILIND/COPELABS/1/2022
Research Center for Applied Communication, Culture and New Technologies
Fundação para a Ciência e TecnologiaUIDB/50008/2020, UIDB/04111/2020, DSAIPA/DS/0102/2019

Impressão digital

Mergulhe nos tópicos de investigação de “QiBERT - Classifying Online Conversations: Messages with BERT as a Feature“. Em conjunto formam uma impressão digital única.

Citar isto