Prediction of Sensor Values in Paper Pulp Industry Using Neural Networks

João Antunes Rodrigues, José Torres Farinha, António Marques Cardoso, Mateus Mendes, Ricardo Mateus

Resultado de pesquisarevisão de pares

2 Citações (Scopus)

Resumo

The economic sustainability of any industry is directly linked to the management and efficiency of its physical assets. The maintenance of these assets is one of the key elements for the success of a company since it represents a relevant part of its Capital and Operational Expenses (CAPEX and OPEX). Due to the importance of maintenance, a lot of research has been done to improve the methodologies aiming to maximize physical assets’ availability at the most rational costs. The introduction of Artificial Intelligence in the world of maintenance increased the quality of prediction on equipment failures, namely when associated to continuous equipment monitoring. This paper presents a case study where a neural network is proposed to predict the future values of various sensors installed on a paper pulp press. Data from the following variables is processed: electric current; pressure; temperature; torque; and speed.

Idioma originalInglês
Título da publicação do anfitriãoProceedings of IncoME-VI and TEPEN 2021 - Performance Engineering and Maintenance Engineering
EditoresHao Zhang, Guojin Feng, Hongjun Wang, Fengshou Gu, Jyoti K. Sinha
EditoraSpringer Science and Business Media B.V.
Páginas281-291
Número de páginas11
ISBN (impresso)9783030990749
DOIs
Estado da publicaçãoPublicadas - 2023
Evento6th International Conference on Maintenance Engineering, IncoME-VI and the Conference of the Efficiency and Performance Engineering Network, TEPEN 2021 - Tianjin
Duração: 20 out. 202123 out. 2021

Série de publicação

NomeMechanisms and Machine Science
Volume117
ISSN (impresso)2211-0984
ISSN (eletrónico)2211-0992

Conferência

Conferência6th International Conference on Maintenance Engineering, IncoME-VI and the Conference of the Efficiency and Performance Engineering Network, TEPEN 2021
País/TerritórioChina
CidadeTianjin
Período20/10/2123/10/21

Nota bibliográfica

Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Financiamento

Financiadoras/-esNúmero do financiador
INCD01/SAICT/2016, 022153
Horizon 2020 Framework Programme871284
Fundação para a Ciência e a TecnologiaUIDB/04131/2020, UIDB/00285/2020, PTDC/EEI-EEE/29494/2017, UIDP/04131/2020
European Regional Development FundPOCI-01-0145-FEDER-029494

    Impressão digital

    Mergulhe nos tópicos de investigação de “Prediction of Sensor Values in Paper Pulp Industry Using Neural Networks“. Em conjunto formam uma impressão digital única.

    Citar isto