Multi-objective identification of critical distribution network assets in large interruption datasets

C. G. Marcelino, V. Torres, L. Carvalho, M. Matos, V. Miranda

Resultado de pesquisarevisão de pares

9 Citações (Scopus)

Resumo

Performance indicators, such as the SAIFI and the SAIDI, are commonly used by regulatory agencies to evaluate the performance of distribution companies (DisCos). Based on such indicators, it is common practice to apply penalties or grant rewards if the indicators are greater to or less than a given threshold. This work proposes a new multi-objective optimization model for pinpointing the critical assets involved in outage events based on past performance indicators, such as the SAIDI and the System Average Interruption Duration Exceeding Threshold (SAIDET) indexes. Our approach allows to retrieve the minimal set of assets in large historical interruption datasets that most contribute to past performance indicators. A case study using a real interruption dataset between the years 2011–2104 from a Brazilian DisCo revealed that the optimal inspection plan according to the decision maker preferences consist of 332 equipment out of a total of 5873. This subset of equipment, which contribute 61.90% and 55.76% to the observed SAIFI and SAIDET indexes in that period, can assist managerial decisions for preventive maintenance actions by prioritizing technical inspections to assets deemed as critical.

Idioma originalInglês
Número do artigo107747
RevistaInternational Journal of Electrical Power and Energy Systems
Volume137
DOIs
Estado da publicaçãoPublicadas - mai. 2022
Publicado externamenteSim

Nota bibliográfica

Publisher Copyright:
© 2021

Financiamento

Financiadoras/-esNúmero do financiador
Fundação para a Ciência e a TecnologiaUID/EEA/50014/2019
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior001
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

    Impressão digital

    Mergulhe nos tópicos de investigação de “Multi-objective identification of critical distribution network assets in large interruption datasets“. Em conjunto formam uma impressão digital única.

    Citar isto