Maximum search limitations: Boosting evolutionary particle swarm optimization exploration

Mário Serra Neto, Marco Mollinetti, Vladimiro Miranda, Leonel Carvalho

Resultado de pesquisarevisão de pares

3 Citações (Scopus)

Resumo

The following paper presents a novel strategy named Maximum Search Limitations (MS) for the Evolutionary Particle Swarm Optimization (EPSO). The approach combines EPSO standard search mechanism with a set of rules and position-wise statistics, allowing candidate solutions to carry a more thorough search around the neighborhood of the best particle found in the swarm. The union of both techniques results in an EPSO variant named MS-EPSO. MS-EPSO crucial premise is to enhance the exploration phase while maintaining the exploitation potential of EPSO. Algorithm performance is measured on eight unconstrained and two constrained engineering design optimization problems. Simulations are made and its results are compared against other techniques including the classic Particle Swarm Optimization (PSO). Lastly, results suggest that MS-EPSO can be a rival to other optimization methods.

Idioma originalInglês
Título da publicação do anfitriãoProgress in Artificial Intelligence - 19th EPIA Conference on Artificial Intelligence, EPIA 2019, Proceedings
EditoresPaulo Moura Oliveira, Paulo Novais, Luís Paulo Reis
EditoraSpringer Verlag
Páginas712-723
Número de páginas12
ISBN (impresso)9783030302405
DOIs
Estado da publicaçãoPublicadas - 2019
Publicado externamenteSim
Evento19th EPIA Conference on Artificial Intelligence, EPIA 2019 - Vila Real
Duração: 3 set. 20196 set. 2019

Série de publicação

NomeLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11804 LNAI
ISSN (impresso)0302-9743
ISSN (eletrónico)1611-3349

Conferência

Conferência19th EPIA Conference on Artificial Intelligence, EPIA 2019
País/TerritórioPortugal
CidadeVila Real
Período3/09/196/09/19

Nota bibliográfica

Publisher Copyright:
© Springer Nature Switzerland AG 2019.

Financiamento

Financiadoras/-esNúmero do financiador
Fundação para a Ciência e a TecnologiaUID/EEA/ 50014/2013
European Regional Development FundPOCI-01-0145-FEDER-006961

    Impressão digital

    Mergulhe nos tópicos de investigação de “Maximum search limitations: Boosting evolutionary particle swarm optimization exploration“. Em conjunto formam uma impressão digital única.

    Citar isto