Improved GRU prediction of paper pulp press variables using different pre-processing methods

Balduíno César Mateus, Mateus Mendes, José Torres Farinha, António Marques Cardoso, Rui Assis, Hamzeh Soltanali

Resultado de pesquisarevisão de pares

9 Citações (Scopus)

Resumo

Predictive maintenance strategies are becoming increasingly more important with the increased needs for automation and digitalization within pulp and paper manufacturing sector.Hence, this study contributes to examine the most efficient pre-processing approaches for predicting sensory data trends based on Gated Recurrent Unit (GRU) neural networks. To validate the model, the data from two paper pulp presses with several pre-processing methods are utilized for predicting the units’ conditions. The results of validation criteria show that pre-processing data using a LOWESS in combination with the Elimination of discrepant data filter achieves more stable results, the prediction error decreases, and the predicted values are easier to interpret. The model can anticipate future values with MAPE, RMSE and MAE of 1.2, 0.27 and 0.30 respectively. The errors are below the significance level. Moreover, it is identified that the best hyperparameters found for each paper pulp press must be different.

Idioma originalInglês
Número do artigo2155263
RevistaProduction and Manufacturing Research
Volume11
Número de emissão1
DOIs
Estado da publicaçãoPublicadas - 2023

Nota bibliográfica

Publisher Copyright:
© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Financiamento

Financiadoras/-esNúmero do financiador
Horizon 2020 Framework Programme871284
Fundação para a Ciência e a TecnologiaUIDB/04131/2020, PTDC/EEI-EEE/29494/2017, UIDP/04131/2020
European Regional Development FundPOCI-01-0145-FEDER-029494

    Impressão digital

    Mergulhe nos tópicos de investigação de “Improved GRU prediction of paper pulp press variables using different pre-processing methods“. Em conjunto formam uma impressão digital única.

    Citar isto