Resumo

We study the convergence of the path integral (PI) for general relativity with matter on a picewise linear (PL) spacetime that corresponds to a triangulation of a smooth manifold by using a PI measure that renders the pure gravity PI finite. This measure depends on a parameter p, and in the case when the matter content is just scalar fields, we show that the PI is absolutely convergent for p > 0,5 and not more than two scalar fields. In the case of Yang-Mills (YM) fields, we show that the PI is absolutely convergent for the U(1) group and p > 0,5. In the case of Dirac fermions, we show that the PI is absolutely convergent for any number of fermions and a sufficiently large p. When the matter content is given by scalars, YM fields and fermions, as in the case of the standard model (SM), we show that the PI is absolutely convergent for p > 52,5. Hence one can construct a finite quantum gravity theory on a PL spacetime such that the classical limit is general relativity coupled to the SM.

Idioma originalInglês
Número do artigo245011
RevistaClassical and Quantum Gravity
Volume40
Número de emissão24
DOIs
Estado da publicaçãoPublicadas - 14 dez. 2023

Nota bibliográfica

Publisher Copyright:
© 2023 IOP Publishing Ltd.

Financiamento

Financiadoras/-esNúmero do financiador
Science Fund of the Republic of SerbiaQGHG-2021, 7745968

    Impressão digital

    Mergulhe nos tópicos de investigação de “Finiteness of quantum gravity with matter on a PL spacetime“. Em conjunto formam uma impressão digital única.

    Citar isto