Decision Support Using Machine Learning Indication for Financial Investment

Ariel Vieira de Oliveira, Márcia Cristina Schiavi Dazzi, Anita Maria da Rocha Fernandes, Rudimar Luis Scaranto Dazzi, Paulo Ferreira, Valderi Reis Quietinho Leithardt

Resultado de pesquisarevisão de pares

4 Citações (Scopus)

Resumo

To support the decision-making process of new investors, this paper aims to implement Machine Learning algorithms to generate investment indications, considering the Brazilian scenario. Three artificial intelligence techniques were implemented, namely: Multilayer Perceptron, Logistic Regression and Decision Tree, which performed the classification of investments. The database used was the one provided by the website Oceans14, containing the history of Fundamental Indicators and the history of Quotations, considering BOVESPA (São Paulo State Stock Exchange). The results of the different algorithms were compared to each other using the following metrics: accuracy, precision, recall, and F1-score. The Decision Tree was the algorithm that obtained the best classification metrics and an accuracy of 77%.

Idioma originalInglês
Número do artigo304
RevistaFuture Internet
Volume14
Número de emissão11
DOIs
Estado da publicaçãoPublicadas - nov. 2022

Nota bibliográfica

Publisher Copyright:
© 2022 by the authors.

Financiamento

Financiadoras/-esNúmero do financiador
Fundação para a Ciência e a TecnologiaCOFAC/ILIND/COPELABS/3/2020, UIDB/04111/2020, UIDB/05064/2020

    Impressão digital

    Mergulhe nos tópicos de investigação de “Decision Support Using Machine Learning Indication for Financial Investment“. Em conjunto formam uma impressão digital única.

    Citar isto