Data Analysis for Predictive Maintenance Using Time Series and Deep Learning Models—A Case Study in a Pulp Paper Industry

Balduíno Mateus, Mateus Mendes, José Torres Farinha, Alexandre Batista Martins, António Marques Cardoso

Resultado de pesquisarevisão de pares

9 Citações (Scopus)

Resumo

Predictive maintenance is fundamental for modern industries, in order to improve the physical assets availability, decision making and rationalize costs. That requires deployment of sensor networks, data storage and development of data treatment methods that can satisfy the quality required in the forecasting models. The present paper describes a case study where data collected in an industrial pulp paper press was pre-processed and used to predict future behavior, aiming to anticipate potential failures, optimize predictive maintenance and physical assets availability. The data were processed and analyzed, outliers identified and treated. Time series models were used to predict short-term future behavior. The results show that it is possible to predict future values up to ten days in advance with good accuracy.

Idioma originalInglês
Título da publicação do anfitriãoProceedings of IncoME-VI and TEPEN 2021 - Performance Engineering and Maintenance Engineering
EditoresHao Zhang, Guojin Feng, Hongjun Wang, Fengshou Gu, Jyoti K. Sinha
EditoraSpringer Science and Business Media B.V.
Páginas11-25
Número de páginas15
ISBN (impresso)9783030990749
DOIs
Estado da publicaçãoPublicadas - 2023
Evento6th International Conference on Maintenance Engineering, IncoME-VI and the Conference of the Efficiency and Performance Engineering Network, TEPEN 2021 - Tianjin
Duração: 20 out. 202123 out. 2021

Série de publicação

NomeMechanisms and Machine Science
Volume117
ISSN (impresso)2211-0984
ISSN (eletrónico)2211-0992

Conferência

Conferência6th International Conference on Maintenance Engineering, IncoME-VI and the Conference of the Efficiency and Performance Engineering Network, TEPEN 2021
País/TerritórioChina
CidadeTianjin
Período20/10/2123/10/21

Nota bibliográfica

Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Financiamento

Financiadoras/-esNúmero do financiador
Horizon 2020 Framework Programme871284
Fundação para a Ciência e a TecnologiaUIDB/04131/2020, PTDC/EEI-EEE/29494/2017, UIDP/04131/2020
European Regional Development FundPOCI-01-0145-FEDER-029494

    Impressão digital

    Mergulhe nos tópicos de investigação de “Data Analysis for Predictive Maintenance Using Time Series and Deep Learning Models—A Case Study in a Pulp Paper Industry“. Em conjunto formam uma impressão digital única.

    Citar isto