Convolutional Neural Networks for Autonomous UAV Navigation in GPS-Denied Environments

Ricardo Serras Santos, João P. Matos-Carvalho, Slavisa Tomic, Marko Beko, Carlos T. Calafate

Resultado de pesquisa

Resumo

This work addresses the challenge of autonomous Unmanned Aerial Vehicle (UAV) navigation in Global Positioning System (GPS)-denied environments by proposing a new approach that is an amalgamation of data-driven and model-based philosophies. The proposed method exploits datasets acquired from existing frameworks like the Generalized Trust Region Sub-problem (GTRS) and the Weighted Least Squares (WLS). These datasets are then used to feed the proposed Convolutional Neural Network (CNN) specially tailored to create models for UAV navigation. Afterwards, these models are used to make predictions of an optimal trajectory. The obtained numerical results reveal that the proposed CNN reveals improvements in accuracy and robustness to noise when compared to other Machine Learning approaches, while reducing the required training time.

Idioma originalInglês
Título da publicação do anfitriãoTechnological Innovation for Human-Centric Systems - 15th IFIP WG 5.5/SOCOLNET Advanced Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2024, Proceedings
EditoresLuis M. Camarinha-Matos, Filipa Ferrada
EditoraSpringer Science and Business Media Deutschland GmbH
Páginas111-122
Número de páginas12
ISBN (impresso)9783031638503
DOIs
Estado da publicaçãoPublicadas - 1 jan. 2024
Evento15th Advanced Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2024 - Caparica
Duração: 3 jul. 20245 jul. 2024

Série de publicação

NomeIFIP Advances in Information and Communication Technology
Volume716 IFIPAICT
ISSN (impresso)1868-4238
ISSN (eletrónico)1868-422X

Conferência

Conferência15th Advanced Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2024
País/TerritórioPortugal
CidadeCaparica
Período3/07/245/07/24

Nota bibliográfica

Publisher Copyright:
© IFIP International Federation for Information Processing 2024.

Financiamento

Financiadoras/-esNúmero do financiador
European Union’s Horizon Europe research and innovation programme
European Commission
Fundação para a Ciência e a Tecnologia2021.04180, UIDB/50008/2020, CEECINST/00147/2018/CP1498/CT0015, UIDB/04111/2020
H2020 Marie Skłodowska-Curie Actions101086387
Instituto Lusófono de Investigação e DesenvolvimentoCOFAC/ILIND/COPELABS/1/2022
ROBUSTEXPL/EEIEEE/0776/2021

    Impressão digital

    Mergulhe nos tópicos de investigação de “Convolutional Neural Networks for Autonomous UAV Navigation in GPS-Denied Environments“. Em conjunto formam uma impressão digital única.

    Citar isto