Closed-form Approximations for the Minimal Robust Positively Invariant Set using Constrained Convex Generators

Resultado de pesquisarevisão de pares

Resumo

Robust Positively Invariant (RPI) sets play a crucial role in constructing terminal constraints for Model Predictive Control (MPC) optimizations and the definition of the invariant sets to be used in Control Barrier Functions (CBFs). However, the solutions in the literature involve either an iterative method that is approaching the true set or an approximation using optimization programs. In this paper, by leveraging the fact that Constrained Convex Generators (CCGs) can represent both polytopes, ellipsoids and other sets, we propose closed-form expressions for outer and inner approximations. Moreover, the tightness can be defined by the system designer based on a straightforward analysis of the norm of the dynamics matrix. We then illustrate how our proposal fairs against the iterative approach highlighting how changing the horizon value influences the added conservatism.

Idioma originalInglês
Páginas (de-até)126-131
Número de páginas6
RevistaIFAC-PapersOnLine
Volume58
Número de emissão25
DOIs
Estado da publicaçãoPublicadas - 1 set. 2024
Evento3rd Control Conference Africa, CCA 2024 - Balaclava
Duração: 16 set. 202417 set. 2024

Nota bibliográfica

Publisher Copyright:
© Copyright 2024 The Authors.

Financiamento

Financiadoras/-esNúmero do financiador
Portuguese Funda¸cão para a Ciência e a Tecnologia
Fundação para a Ciência e a Tecnologia

    Impressão digital

    Mergulhe nos tópicos de investigação de “Closed-form Approximations for the Minimal Robust Positively Invariant Set using Constrained Convex Generators“. Em conjunto formam uma impressão digital única.

    Citar isto