Resumo
Insulators of the electrical power grid are usually installed outdoors, so they suffer from environmental stresses, such as the presence of contamination. Contamination can increase surface conductivity, which can lead to system failures, reducing the reliability of the network. The identification of insulators that have their properties compromised is important so that there are no discharges through its insulating body. To perform the classification of contaminated insulators, this paper presents computer vision techniques for the extraction of contamination characteristics, and a neural network (NN) model for the classification of this condition. Specifically, the Sobel edge detector, Canny edge detection, binarization with threshold, adaptive binarization with threshold, threshold with Otsu and Riddler–Calvard techniques will be evaluated. The results show that it is possible to have an accuracy of up to 97.50% for the classification of contaminated insulators from the extraction of characteristics with computer vision using the NN for the classification. The proposed model is more accurate than well-established models such as support-vector machine (SVM), k-nearest neighbor (k-NN), and ensemble learning methods. This showed that optimizing the model's parameters can make it superior to solve the problem in question.
Idioma original | Inglês |
---|---|
Páginas (de-até) | 1096-1107 |
Número de páginas | 12 |
Revista | IET Generation, Transmission and Distribution |
Volume | 16 |
Número de emissão | 6 |
DOIs | |
Estado da publicação | Publicadas - mar. 2022 |
Nota bibliográfica
Publisher Copyright:© 2021 The Authors. IET Generation, Transmission & Distribution published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
Financiamento
Financiadoras/-es | Número do financiador |
---|---|
Ci?ncia e a Tecnologia | |
Instituto Lusófono de Investigação e Desenvolvimento | |
University of Regina | |
Canadian Bureau for International Education | |
Fundação para a Ciência e a Tecnologia | COFAC/ILIND/COPELABS/3/2020, UIDB/04111/2020, UIDB/05064/2020 |
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior |