Classification of insulators using neural network based on computer vision

Stéfano Frizzo Stefenon, Marcelo Picolotto Corso, Ademir Nied, Fabio Luis Perez, Kin Choong Yow, Gabriel Villarrubia Gonzalez, Valderi Reis Quietinho Leithardt

Resultado de pesquisarevisão de pares

50 Citações (Scopus)

Resumo

Insulators of the electrical power grid are usually installed outdoors, so they suffer from environmental stresses, such as the presence of contamination. Contamination can increase surface conductivity, which can lead to system failures, reducing the reliability of the network. The identification of insulators that have their properties compromised is important so that there are no discharges through its insulating body. To perform the classification of contaminated insulators, this paper presents computer vision techniques for the extraction of contamination characteristics, and a neural network (NN) model for the classification of this condition. Specifically, the Sobel edge detector, Canny edge detection, binarization with threshold, adaptive binarization with threshold, threshold with Otsu and Riddler–Calvard techniques will be evaluated. The results show that it is possible to have an accuracy of up to 97.50% for the classification of contaminated insulators from the extraction of characteristics with computer vision using the NN for the classification. The proposed model is more accurate than well-established models such as support-vector machine (SVM), k-nearest neighbor (k-NN), and ensemble learning methods. This showed that optimizing the model's parameters can make it superior to solve the problem in question.

Idioma originalInglês
Páginas (de-até)1096-1107
Número de páginas12
RevistaIET Generation, Transmission and Distribution
Volume16
Número de emissão6
DOIs
Estado da publicaçãoPublicadas - mar. 2022

Nota bibliográfica

Publisher Copyright:
© 2021 The Authors. IET Generation, Transmission & Distribution published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology

Financiamento

Financiadoras/-esNúmero do financiador
Ci?ncia e a Tecnologia
Instituto Lusófono de Investigação e Desenvolvimento
University of Regina
Canadian Bureau for International Education
Fundação para a Ciência e a TecnologiaCOFAC/ILIND/COPELABS/3/2020, UIDB/04111/2020, UIDB/05064/2020
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

    Impressão digital

    Mergulhe nos tópicos de investigação de “Classification of insulators using neural network based on computer vision“. Em conjunto formam uma impressão digital única.

    Citar isto