Application of machine learning techniques to predict a patient’s no-show in the healthcare sector

Luiz Henrique A. Salazar, Valderi R.Q. Leithardt, Wemerson Delcio Parreira, Anita M. da Rocha Fernandes, Jorge Luis Victória Barbosa, Sérgio Duarte Correia

Resultado de pesquisarevisão de pares

32 Citações (Scopus)

Resumo

The health sector faces a series of problems generated by patients who miss their scheduled appointments. The main challenge to this problem is to understand the patient’s profile and predict potential absences. The goal of this work is to explore the main causes that contribute to a patient’s no-show and develop a prediction model able to identify whether the patient will attend their scheduled appointment or not. The study was based on data from clinics that serve the Unified Health System (SUS) at the University of Vale do Itajaí in southern Brazil. The model obtained was tested on a real collected dataset with about 5000 samples. The best model result was performed by the Random Forest classifier. It had the best Recall Rate (0.91) and achieved an ROC curve rate of 0.969. This research was approved and authorized by the Ethics Committee of the University of Vale do Itajaí, under opinion 4270,234, contemplating the General Data Protection Law.

Idioma originalInglês
Número do artigo3
RevistaFuture Internet
Volume14
Número de emissão1
DOIs
Estado da publicaçãoPublicadas - jan. 2022

Nota bibliográfica

Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Financiamento

Financiadoras/-esNúmero do financiador
Aperfei?oamento de Pessoal de N?vel Superior
Ci?ncia e a Tecnologia
EDITAL DE CHAMADA PÚBLICA FAPESC06/2017
Instituto Lusófono de Investigação e Desenvolvimento
Pesquisa do Estado de Santa Catarina
UIDB/05064/2020
VALORIZA-Research Center for Endogenous Resource Valorization
Fundação para a Ciência e a TecnologiaUIDB/04111/2020
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior001
Fundação de Amparo à Pesquisa e Inovação do Estado de Santa CatarinaCOFAC/ILIND/COPELABS/3/2020, CO-FAC/ILIND/COPELABS/1/2020

    Impressão digital

    Mergulhe nos tópicos de investigação de “Application of machine learning techniques to predict a patient’s no-show in the healthcare sector“. Em conjunto formam uma impressão digital única.

    Citar isto