Resumo

This paper provides a concise and comprehensive analysis of forest fire spread simulation. The Alexandridis model was implemented and enhanced utilizing stochastic methods in a Python environment. The impact of various factors influencing fire spread was individually studied. Results were empirically analyzed based on model-generated images, addressing the lack of real fire data. Multiple scenarios and parameter values were explored, highlighting the effectiveness of the developed method. In summary, this paper provides a concise and comprehensive analysis of forest fire spread simulation, demonstrating the efficacy of the Alexandridis model. Findings suggest the potential for developing a more effective model to combat forest fires and improve prediction and prevention methods.

Idioma originalInglês
Título da publicação do anfitriãoProceedings - 8th International Young Engineers Forum on Electrical and Computer Engineering, YEF-ECE 2024
EditoraInstitute of Electrical and Electronics Engineers Inc.
Páginas31-38
Número de páginas8
ISBN (eletrónico)9798350387643
ISBN (impresso)9798350387643
DOIs
Estado da publicaçãoPublicadas - 5 jul. 2024
Evento8th International Young Engineers Forum on Electrical and Computer Engineering, YEF-ECE 2024 - Lisbon
Duração: 5 jul. 2024 → …

Série de publicação

Nome2024 8th International Young Engineers Forum on Electrical and Computer Engineering (YEF-ECE)

Conferência

Conferência8th International Young Engineers Forum on Electrical and Computer Engineering, YEF-ECE 2024
País/TerritórioPortugal
CidadeLisbon
Período5/07/24 → …

Nota bibliográfica

Publisher Copyright:
© 2024 IEEE.

Impressão digital

Mergulhe nos tópicos de investigação de “Adaptive Simulation of Separate Factors in the Alexandridis Wildfire Model“. Em conjunto formam uma impressão digital única.

Citar isto