A Hybrid LSTM-based Neural Network for Satellite-less UAV Navigation

Ricardo Santos, Joaao P. Matos-Carvalho, Slavisa Tomic, Marko Beko, Sergio D. Correia

Resultado de pesquisarevisão de pares

2 Citações (Scopus)

Resumo

This work proposes a new algorithm to address the problem of unmanned aerial vehicle (UAV) navigation in satellite-less environments by combining machine learning with existent model-based methods. The proposed network model is trained by using the predictions of two estimators, one based on a Generalized trust region sub-problem (GTRS) framework and the other one founded on a Weighted Least Squares (WLS) principle. The solutions of these two estimators are then fed to two Long Short-Term Memories (LSTMs) to create models whose predictions are averaged to achieve the final prediction output. Our numerical results show favorable performance of the new network, obtaining improved accuracy and higher robustness to noise when compared with the individual counterparts of the network used in the training phase. Consequently, the proposed method offers safer an more reliable navigation of the UAV in satellite-less environments.

Idioma originalInglês
Título da publicação do anfitriãoProceedings - 2023 6th Conference on Cloud and Internet of Things, CIoT 2023
EditoraInstitute of Electrical and Electronics Engineers Inc.
Páginas91-97
Número de páginas7
ISBN (eletrónico)9798350396690
DOIs
Estado da publicaçãoPublicadas - 2023
Evento6th Conference on Cloud and Internet of Things, CIoT 2023 - Lisbon
Duração: 20 mar. 202322 mar. 2023

Série de publicação

NomeProceedings - 2023 6th Conference on Cloud and Internet of Things, CIoT 2023

Conferência

Conferência6th Conference on Cloud and Internet of Things, CIoT 2023
País/TerritórioPortugal
CidadeLisbon
Período20/03/2322/03/23

Nota bibliográfica

Publisher Copyright:
© 2023 IEEE.

Financiamento

Financiadoras/-esNúmero do financiador
European Union's Horizon Europe Research and Innovation Programme
European Union’s Horizon Europe research and innovation programme
Instituto Lusófono de Investigacao e DesenvolvimentoCOFAC/ILIND/COPELABS/1/2022
H2020 Marie Skłodowska-Curie Actions101086387
Fundação para a Ciência e a Tecnologia2021.04180, EXPL/EEI-EEE/0776/2021, UIDB/50008/2020, UIDB/04111/2020

    Impressão digital

    Mergulhe nos tópicos de investigação de “A Hybrid LSTM-based Neural Network for Satellite-less UAV Navigation“. Em conjunto formam uma impressão digital única.

    Citar isto